Project Title	Funding	Strategic Plan Objective	Institution
Roles of oxytocin and vasopressin in brain	\$1,990,068	Q4.S.B	National Institutes of Health
Studies of genetic and metabolic disorders, autism and premature aging	\$1,667,480	Q4.S.B	National Institutes of Health
Animal models Of neuropsychiatric disorders	\$974,415	Q4.S.B	National Institutes of Health
Using induced pluripotent stem cells to identify cellular phenotypes of autism	\$792,000	Q4.S.B	Stanford University
Dissecting the neural control of social attachment	\$764,775	Q4.S.B	University of California, San Francisco
Effects of chronic intranasal oxytocin	\$568,507	Q4.S.B	University of California, Davis
Identifying therapeutic targets for autism using Shank3-deficient mice	\$484,667	Q4.S.B	Mount Sinai School of Medicine
Autism iPSCs for studying function and dysfunction in human neural development	\$460,152	Q4.S.B	Scripps Research Institute
Oxytocin receptors and social behavior	\$440,363	Q4.S.B	Emory University
Characterization of the schizophrenia-associated 3q29 deletion in mouse	\$404,198	Q4.S.B	Emory University
Behavioral and physiological consequences of disrupted Met signaling	\$400,000	Q4.S.B	University of Southern California
Striatal synaptic abnormalities in models of autism	\$397,396	Q4.S.B	University of Texas Southwestern Medical Center
Neurobiological signatures of social dysfunction and repetitive behavior	\$395,672	Q4.S.B	Vanderbilt University Medical Center
Cellular and genetic correlates of increased head size in autism spectrum disorder	\$393,455	Q4.S.B	Yale University
The genetic and neuroanatomical origin of social behavior	\$391,250	Q4.S.B	Baylor College of Medicine
Neuroligin function in vivo: Implications for autism and mental retardation	\$388,575	Q4.S.B	University of Texas Southwestern Medical Center
Mechanisms of stress-enhanced aversive conditioning	\$381,250	Q4.S.B	Northwestern University
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$377,663	Q4.S.B	Salk Institute for Biological Studies
Exploring the neuronal phenotype of autism spectrum disorders using induced pluripotent stem cells	\$366,529	Q4.S.B	Stanford University
Small-molecule compounds for treating autism spectrum disorders	\$350,000	Q4.S.B	University of North Carolina at Chapel Hill
Dissecting the circuitry basis of autistic-like behaviors in mice	\$350,000	Q4.S.B	Massachusetts Institute of Technology
16p11.2: defining the gene(s) responsible	\$350,000	Q4.S.B	Cold Spring Harbor Laboratory
The genetic control of social behavior in the mouse	\$342,540	Q4.S.B	University Of Hawai'i at Manoa
Novel genetic models of autism	\$337,875	Q4.S.B	University of Texas Southwestern Medical Center
Patient iPS cells with copy number variations to model neuropsychiatric disorders	\$336,050	Q4.S.B	The Hospital for Sick Children
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$315,375	Q4.S.B	University of California, San Francisco

Project Title	Funding	Strategic Plan Objective	Institution
The role of glutamate receptor intereacting proteins in autism	\$312,500	Q4.S.B	Johns Hopkins University School of Medicine
Investigating the effects of chromosome 22q11.2 deletions	\$300,000	Q4.S.B	Columbia University
Role of a novel Wnt pathway in autism spectrum disorders	\$300,000	Q4.S.B	University of California, San Francisco
Control of synaptic protein synthesis in the pathogenesis and therapy of autism	\$294,937	Q4.S.B	Massachusetts General Hospital
Insight into MeCP2 function raises therapeutic possibilities for Rett syndrome	\$290,087	Q4.S.B	University of California, San Francisco
Animal model of speech sound processing in autism	\$283,249	Q4.S.B	University of Texas at Dallas
Investigating the role of CNTNAP2 gene in vocal learning in mutant songbirds	\$249,063	Q4.S.B	University of Massachusetts Medical School
Serotonin, autism, and investigating cell types for CNS disorders	\$246,794	Q4.S.B	Washington University in St. Louis
Modeling the serotonin contribution to autism spectrum disorders	\$236,532	Q4.S.B	Vanderbilt University Medical Center
Transgenic and knockout approaches to study protocadherin function	\$228,750	Q4.S.B	The Ohio State University
16p11.2 deletion mice: autism-relevant phenotypes and treatment discovery	\$200,000	Q4.S.B	University of California, Davis
16p11.2 deletion mice: Autism-relevant phenotypes and treatment discovery	\$200,000	Q4.S.B	Stanford University
Tooth pulp as a source for neuronal precursor cells to study neurogenetic disorders	\$187,344	Q4.S.B	University of Tennessee Health Science Center
Effect of abnormal calcium influx on social behavior in autism	\$156,250	Q4.S.B	University of California, San Francisco
Studying the neural development of patient-derived stem cells	\$156,250	Q4.S.B	Johns Hopkins University School of Medicine
Deficits in tonic inhibition and the pathology of autism spectrum disorders	\$156,250	Q4.S.B	Tufts University
Role of cadherin-8 in the assembly of prefrontal cortical circuits	\$155,940	Q4.S.B	Mount Sinai School of Medicine
Functional study of synaptic scaffold protein SHANK3 and autism mouse model	\$150,000	Q4.S.B	Duke University
Novel approaches to enhance social cognition by stimulating central oxytocin release	\$149,852	Q4.S.B	Emory University
PsychoGenics Inc.	\$147,925	Q4.S.B	PsychoGenics Inc.
Functional analysis of rare variants in genes associated with autism	\$146,625	Q4.S.B	Yale University
Identifying high-impact therapeutic targets for autism spectrum disorders using rat models	\$137,173	Q4.S.B	Mount Sinai School of Medicine

Project Title	Funding	Strategic Plan Objective	Institution	
Synaptic pathophysiology of 16p11.2 model mice	\$125,000	Q4.S.B	Massachusetts Institute of Technology	
Understanding copy number variants associated with autism	\$125,000	Q4.S.B	Duke University Medical Center	
Cerebellar signaling in mouse models of autism	\$125,000	Q4.S.B	Northwestern University	
Identifying therapeutic targets for autism using Shank3- deficient mice (supplement)	\$121,077	Q4.S.B	Mount Sinai School of Medicine	
Cell type-specific profiling for autism spectrum disorders	\$120,000	Q4.S.B	Columbia University	
Quantitative analysis of effect of autism-related genes on behavioral regulation	\$102,000	Q4.S.B	University of California, San Francisco	
Rat knockout models of ASD	\$100,441	Q4.S.B	Baylor College of Medicine	
Novel genetic models of autism (supplement)	\$99,773	Q4.S.B	University of Texas Southwestern Medical Center	
Training in translational social neuroscience	\$98,163	Q4.S.B	Emory University	
Role of Caspr2 (CNTNAP2) in brain circuits- Core	\$89,999	Q4.S.B	Weizmann Institute of Science	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 2	\$79,584	Q4.S.B	University of California, Los Angeles	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 1	\$79,525	Q4.S.B	Universidad Miguel Hernandez	
Role of UBE3A in neocortical plasticity and function	\$77,686	Q4.S.B	University of North Carolina at Chapel Hill	
OCT blockade to restore sociability in 5-HT transporter knock-out mice	\$74,250	Q4.S.B	University of Texas Health Science Center at San Antonio	
A probiotic therapy for autism	\$62,500	Q4.S.B	California Institute of Technology	
Perinatal choline supplementation as a treatment for autism	\$62,500	Q4.S.B	Boston University	
Establishing next-generation tools for quantitative behavioral phenotyping	\$60,000	Q4.S.B	Harvard Medical School	
Temporally controlled genetic rescue of Shank3 autism model	\$60,000	Q4.S.B	University of Texas Southwestern Medical Center	
Mechanism and treatment of ASD related behavior in the Cntnap2 knockout mouse model	\$58,000	Q4.S.B	University of California, Los Angeles	
Preclinical therapeutic target validation of glutamate receptors in Shank3 models of autism	\$56,900	Q4.S.B	University of Texas Southwestern Medical Center	
Integrative system biology of iPSC-induced neurons for identifying novel drug targets	\$55,200	Q4.S.B	Baylor College of Medicine	
Effects of oxytocin receptor agonists in mouse models of autism spectrum disorder phenotypes	\$48,500	Q4.S.B	University of North Carolina at Chapel Hill	
Synaptic and circuitry mechanisms of repetitive behaviors in autism	\$47,041	Q4.S.B	Massachusetts Institute of Technology	
Adverse prenatal environment and altered social and anxiety-related behaviors	\$45,000	Q4.S.B	University of Pennsylvania	
Impact of an autism associated mutation in DACT1 on brain development and behavior	\$45,000	Q4.S.B	University of California, San Francisco	

Project Title	Funding	Strategic Plan Objective	Institution
Role of astrocytic glutamate transporter GLT1 in fragile X	\$40,000	Q4.S.B	Tufts University
Using induced-pluripotent stem cells to study Phelan McDermid Syndrome	\$40,000	Q4.S.B	Stanford University School of Medicine
Evaluating hyperserotonemia as a biomarker of sensory dysfunction in autism spectrum disorder	\$28,600	Q4.S.B	Vanderbilt University
Development of a high-content neuronal assay to screen therapeutics for the treatment of cognitive dysfunction in autism spectrum disorders	\$0	Q4.S.B	Massachusetts Institute of Technology
The role of SHANK3 in autism spectrum disorders	\$0	Q4.S.B	Mount Sinai School of Medicine
Shank3 mutant characterization in vivo	\$0	Q4.S.B	University of Texas Southwestern Medical Center
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill
Using zebrafish and chemical screening to define function of autism genes	\$0	Q4.S.B	Whitehead Institute for Biomedical Research
Neural and cognitive mechanisms of autism	\$0	Q4.S.B	Massachusetts Institute of Technology
Integrated approach to the neurobiology of autism spectrum disorders	\$0	Q4.S.B	Yale University
Characterization of synaptic and neural circuitry dysfunction underlying ASD-like behaviors using a novel genetic mouse model	\$0	Q4.S.B	Duke University
Genomic imbalances at the 22q11 locus and predisposition to autism	\$0	Q4.S.B	Columbia University
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill
Novel probiotic therapies for autism	\$0	Q4.S.B	California Institute of Technology
Novel therapeutic targets to treat social behavior deficits in autism and related disorders	\$0	Q4.S.B	University of Texas Health Science Center at San Antonio
Cellular and molecular pathways of cortical afferentation in autism spectrum disorders	\$0	Q4.S.B	University of Geneva
Examination of the mGluR-mTOR pathway for the identification of potential therapeutic targets to treat fragile X	\$0	Q4.S.B	University of Pennsylvania
Developing a new model system to study mechanisms of attention control	\$0	Q4.S.B	Stanford University
Role of RAS/RAF/ERK pathway in pathogenesis and treatment of autism	\$0	Q4.S.B	New York State Institute for Basic Research in Developmental Disabilities
A mouse model for human chromosome 7q11.23 duplication syndrome	\$0	Q4.S.B	University of Toronto